La Novella Marseille, France

New built private collective housing with a collective hot water system with heat pump supported by non-glazed solar thermal energy.

Key facts

Building
- Location: Marseille, France
- Heat distribution: 2833 m²
- Level of insulation: BBC-Effinergie label

Heat pump and source
- Number of heat pumps: 2
- Installed capacity: 2 x 12 kW
- Operation mode: monoenergetic
- Heat source: unglazed solar panels 100 m²
- Brand and type: Heliopacsystem® plus
- Refrigerant: R134A
- Sound level: 45 dB

Heating system
- Heat demand: kW
- Heating temperature: °C

Domestic hot water
- Type of system: collective circulations with individual substations
- Max. Temperature: 65 °C
- Circulation system: thermal
- Legionella measures:
- Storage size: 6000 litres
- Number of storage tanks: 6
- Storage losses: Thermal
- Temperature control: Other

Other information
- Solar thermal: 100 m²

Similar projects
- Azureo Le Cannet: 43 new collective dwellings
- Le Castel, Colomiers: 67 collective BBC apartments
- Logements Normandie, Lille: 40 collective housing units rehabilitated

This new built private housing is located in Marseille, in South-East of France. Climate and sunshine are very favourable to the installation of a solar supported heat pump for the production of hot water. Unglazed thermal solar panels, installed on the building roof, in a glycol based water is circulated through the evaporator as source for the heat pump. The heat pump heats a hot water storage tank.

The system consists of:

- 2 x 12 kW Brine/Water heat pump Solerpac®
- 2 storage tanks with a 2000 liters capacity each
- 100 m² unglazed solar panels

Heliopacsystem® is a domestic hot water production technology for collective applications. It uses specific solar panels able to collect energy from both sun and air. Here, heat is collected on the roof by 100 m² unglazed solar panels. Brine heated in these panels is sent in the evaporators of the heat pumps. As more examples show this technology is not only viable for climatic hot areas as the solar collector can be regarded as an energy source for the heat pump.

Hot water heated by:
- Solar: 33%
- Heat Pump: 67%
- Electric back up: 0.01%

The experience in Marseille shows that a large amount of hot water is directly heated by solar thermal energy, which is less the case in the example in Lille.
La Novella Marseille, France, Technical details

HELIOPAC invented in 1990 the principle of dynamic stratification. This consists of concentrating the heating power sequentially on different storage areas, using a set of motorized valves, rather than heating the entire storage area uniformly. Dynamic stratification has enormous advantages. It allows simultaneously:

- limit the installed heat pump power (as well as the solar collector surface in the case of a solar heat pump) by using this power,
- to allow the CAP to cover both the needs linked to DHW drawing as well as those linked to losses in the distribution circuit with the best performance,
- to cover exceptional peaks without having to add a safety margin on the power or the volume of storage installed,
- ensure excellent stability of the DHW distribution temperature while avoiding both the health risks linked to bacterial development and the risks of burns for users.

And finally, to optimize the annual performance coefficient of the heat pump by making it work in cycles on low temperatures downstream when the drawing conditions allow it.