Photovoltaics for Sanitary Hot Water Production

Pedro V. Quiles
Francisco J. Aguilar
Damian Crespí

Heat Pump Water Heaters, a challenging future
Workshop at ICR 2019
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

$\eta = 15\% \times 3.4 = 50\%$

COP = 3.4

HEAT PUMP + SOLAR PV

VS.

$\eta = 50\%$

BOILER + SOLAR THERMAL
Photovoltaics for Sanitary Hot Water Production

HEAT PUMP + SOLAR PV

$\eta = 15\% \times 3.4 = 50\%$

COP = 3.4

VS.

HEAT PUMP + SOLAR THERMAL

COP = 3.4
PV ALTERNATIVE TO SOLAR THERMAL???

- **EFFICIENCY?**
 - PV Panels
 - ST Collectors
 - Electricity vs. Heat

- **COST?**
- **RELIABILITY?**
- **DURABILITY?**
- **EASY TO INSTALL?**
- **LIFE COST ANALYSIS?**
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

Power (W)
100% annual self-consumption = 15% real self-consumption
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

100% annual self-consumption = 15% real self-consumption

Water heating: Shower, cleaning, washing machine, dishwasher
DESING CHARACTERISTICS

- ELECTRICITY EXPORT: YES/NO
- BATTERIES: YES/NO
- THERMAL STORAGE: YES/NO
- COMPRESOR: INVERTER, W=CONSTANT
- IMPROVED CONTROL (SOLAR)

DIMENSIONS:

- NUMBER OF PV PANELS
- COMPRESOR POWER
- BATTERIES: Ah
- STORAGE CAPACITY (liters)
Photovoltaics for Sanitary Hot Water Production

DESIGN CHARACTERISTICS

- ELECTRICITY EXPORT: YES/NO
- BATTERIES: YES/NO
- THERMAL STORAGE: YES/NO
- COMPRESOR: INVERTER, W=CONSTANT
- IMPROVED CONTROL (SOLAR)

DIMENSIONS:

- NUMBER OF PV PANELS
- COMPRESOR POWER
- BATTERIES: Ah
- STORAGE CAPACITY (liters)
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

Diagram:
- REFRIGERANT CIRCUIT
- Control
- Inverter DC/AC
- WATER TANK
- DHW
- CW
- PV PANELS
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

MIDEA Compak KHP 15 190

<table>
<thead>
<tr>
<th>Component</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Capacity</td>
<td>Q_{HP}</td>
<td>W</td>
<td>1500</td>
</tr>
<tr>
<td>Compressor Power</td>
<td>P_{E-COMP}</td>
<td>W</td>
<td>470</td>
</tr>
<tr>
<td>COP</td>
<td>COP</td>
<td>-</td>
<td>3.19</td>
</tr>
<tr>
<td>Refrigerant</td>
<td>---</td>
<td>---</td>
<td>R134a</td>
</tr>
<tr>
<td>Evaporator Fan Power</td>
<td>P_{E-FAN}</td>
<td>W</td>
<td>30</td>
</tr>
<tr>
<td>Tank Volume</td>
<td>Vol.</td>
<td>L</td>
<td>190</td>
</tr>
</tbody>
</table>

DIMENSIONS:
- NUMBER OF PV PANELS = 2 x 235W
- COMPRESOR POWER = 470 W
- BATTERIES: Ah
- STORAGE CAPACITY (liters) = 190 L
Localización: Elche
Clima: Mediterráneo
$H_o=5,06\ \text{kWh/m}^2\cdot\text{día}$
$T_o=15,3^\circ\text{C}$
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

\[E_{PV} = 2.39 \text{ kWh} \]
\[E_{PV,\text{ELEC}} = 1.38 \text{ kWh} \]
\[E_{PV,\text{HP}} = 1.03 \text{ kWh} \]
\[E_{\text{GRID,HP}} = 0.68 \text{ kWh} \]
\[E_{\text{TOT,HP}} = 1.71 \text{ kWh} \]
\[E_{\text{TOT,SYST}} = 3.07 \text{ kWh} \]
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí
<table>
<thead>
<tr>
<th>Month</th>
<th>$E_{\text{GRID,HP}}$</th>
<th>$E_{\text{PV,HP}}$</th>
<th>$E_{\text{PV,ELEC}}$</th>
<th>E_{PV}</th>
<th>Q_{HP}</th>
<th>Q_{ELEC}</th>
<th>Q_{TOT}</th>
<th>Q_{DHW}</th>
<th>Q_{LOSS}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
</tr>
<tr>
<td>January</td>
<td>0.90</td>
<td>1.40</td>
<td>0.61</td>
<td>2.02</td>
<td>6.94</td>
<td>0.61</td>
<td>7.55</td>
<td>5.56</td>
<td>2.15</td>
</tr>
<tr>
<td>February</td>
<td>0.98</td>
<td>1.43</td>
<td>0.75</td>
<td>2.18</td>
<td>6.90</td>
<td>0.75</td>
<td>7.65</td>
<td>5.67</td>
<td>2.02</td>
</tr>
<tr>
<td>March</td>
<td>1.01</td>
<td>1.17</td>
<td>0.91</td>
<td>2.08</td>
<td>6.65</td>
<td>0.91</td>
<td>7.56</td>
<td>5.55</td>
<td>1.89</td>
</tr>
<tr>
<td>April</td>
<td>0.68</td>
<td>1.37</td>
<td>1.22</td>
<td>2.59</td>
<td>7.51</td>
<td>1.22</td>
<td>8.74</td>
<td>6.69</td>
<td>1.74</td>
</tr>
<tr>
<td>May</td>
<td>0.87</td>
<td>1.09</td>
<td>1.10</td>
<td>2.19</td>
<td>7.17</td>
<td>1.10</td>
<td>8.27</td>
<td>6.38</td>
<td>1.71</td>
</tr>
<tr>
<td>June</td>
<td>0.81</td>
<td>0.97</td>
<td>1.24</td>
<td>2.21</td>
<td>6.48</td>
<td>1.24</td>
<td>7.72</td>
<td>6.53</td>
<td>1.36</td>
</tr>
<tr>
<td>July</td>
<td>0.71</td>
<td>0.98</td>
<td>1.41</td>
<td>2.39</td>
<td>6.39</td>
<td>1.41</td>
<td>7.80</td>
<td>6.69</td>
<td>1.19</td>
</tr>
<tr>
<td>August</td>
<td>0.76</td>
<td>0.88</td>
<td>1.35</td>
<td>2.23</td>
<td>6.43</td>
<td>1.35</td>
<td>7.78</td>
<td>6.66</td>
<td>1.14</td>
</tr>
<tr>
<td>Sept.</td>
<td>0.80</td>
<td>0.87</td>
<td>1.27</td>
<td>2.14</td>
<td>6.34</td>
<td>1.27</td>
<td>7.61</td>
<td>6.42</td>
<td>1.20</td>
</tr>
<tr>
<td>Oct.</td>
<td>0.76</td>
<td>1.04</td>
<td>1.15</td>
<td>2.19</td>
<td>6.41</td>
<td>1.15</td>
<td>7.56</td>
<td>6.31</td>
<td>1.44</td>
</tr>
<tr>
<td>Nov.</td>
<td>1.13</td>
<td>0.89</td>
<td>0.72</td>
<td>1.62</td>
<td>6.54</td>
<td>0.72</td>
<td>7.26</td>
<td>5.74</td>
<td>1.77</td>
</tr>
<tr>
<td>Dec.</td>
<td>1.04</td>
<td>1.20</td>
<td>0.72</td>
<td>1.92</td>
<td>6.78</td>
<td>0.72</td>
<td>7.50</td>
<td>5.67</td>
<td>2.03</td>
</tr>
<tr>
<td>Total</td>
<td>317.6</td>
<td>403.7</td>
<td>379.2</td>
<td>782.9</td>
<td>2449.2</td>
<td>379.2</td>
<td>2844.2</td>
<td>2247.6</td>
<td>596.6</td>
</tr>
<tr>
<td>Average</td>
<td>0.87</td>
<td>1.11</td>
<td>1.04</td>
<td>2.15</td>
<td>6.71</td>
<td>1.04</td>
<td>7.75</td>
<td>6.16</td>
<td>1.63</td>
</tr>
</tbody>
</table>
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

Vol = 190 liters
HP: 450 W

$E_{L,GRID} = 0.9$

$E_{PV} = 2.15$

$E_{PV,HP} = 1.11$

$E_{PV,RES} = 1.04$

$E_{HP} = 1.96$

$Q_{DHW} = 6.16$

$Q_{RES} = 1.04$

$Q_{LOS} = 1.63$

$Q_{TOT} = 7.8$ kWh/day

$E_{GRID,HP} = 0.9$

$E_{PV,HP} = 1.11$

$E_{PV,RES} = 1.04$

$E_{HP} = 1.96$

$Q_{DHW} = 6.16$

$Q_{RES} = 1.04$

$Q_{LOS} = 1.63$

$Q_{TOT} = 7.8$ kWh/day

$SPF_{HP} = \frac{Q_{HP}}{E_{TOT,HP}} = \frac{6.71}{1.96} = 3.42$

$SPF_{SYS} = \frac{Q_{SYST}}{E_{GRID,HP}} = \frac{6.71 + 1.04}{0.87} = 8.91$

$SC_{HP} = \frac{E_{PV,HP}}{E_{TOT,HP}} = \frac{1.11}{1.96} = 56.6\%$

$SC_{SYS} = \frac{Q_{RES} + Q_{HP} \cdot SC_{HP}}{Q_{RES} + Q_{HP}}$

$= \frac{1.04 + 6.71 \cdot 0.566}{1.04 + 6.71} = 62.4\%$
Thermo-economic analysis

1. SPF = 8.95, PV = 470 W
2. SPF = 3.40
3. η = 92% [GN]

Referencia

4. η = 92% [GN], CS = 60%
5. η = 100%
6. η = 100%, PV = 940 W
Annual non-renewable primary energy consumption for 90 m² dwelling
317.6 kWhEE/year (45 €/year)
Photovoltaics for Sanitary Hot Water Production

IMPROVEMENTS (1)

- Grid Energy (E_{gr})
- PV energy consumed by the resistance ($E_{PV,RES}$)
- PV energy consumed by the heat pump ($E_{PV,HP}$)

Power (W)

Time (hours)

- $P_{TOT,HP}$
- P_{PV}
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

EXPERIMENTAL RESULTS ON HEAT PUMP + PV

RUNNING IN A REAL HOUSE SINCE SEP2017

Vol = 110 liters
HP: 250 W

HPT-Annex 46
Domestic Hot Water Heat Pumps

230V

Vol = 110 liters
HP: 250 W
Vol = 110 liters
HP: 250 W

SC%?
PF?
PE_SAV?

CONFORT?
IMPROVEMENTS (2)

BATTERIES

Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

Batteries Power (W)

SOLAR: 3 h, GRID: 1 h

Batteries Voltage (V)

HP ON 4h

HP OFF 20h

Time (hours)
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

EXPERIMENTAL RESULTS ON HEAT PUMP + PV

\[E_{\text{DHW}} = 6.2 \]

\[E_{\text{LOS}} = \]

RUNNING IN THE LABORATORY

230V

Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

EXPERIMENTAL RESULTS ON HEAT PUMP + PV

\[E_{\text{DHW}} = 6.2 \]

\[E_{\text{LOS}} = \]

RUNNING IN THE LABORATORY

230V

Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

EXPERIMENTAL RESULTS ON HEAT PUMP + PV

\[E_{\text{DHW}} = 6.2 \]

\[E_{\text{LOS}} = \]

RUNNING IN THE LABORATORY

230V

Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

EXPERIMENTAL RESULTS ON HEAT PUMP + PV

\[E_{\text{DHW}} = 6.2 \]

\[E_{\text{LOS}} = \]

RUNNING IN THE LABORATORY

230V

Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

EXPERIMENTAL RESULTS ON HEAT PUMP + PV

\[E_{\text{DHW}} = 6.2 \]

\[E_{\text{LOS}} = \]

RUNNING IN THE LABORATORY

230V

Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

EXPERIMENTAL RESULTS ON HEAT PUMP + PV

\[E_{\text{DHW}} = 6.2 \]

\[E_{\text{LOS}} = \]

RUNNING IN THE LABORATORY

230V
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

IMPROVEMENTS (3)
Photovoltaics for Sanitary Hot Water Production

P.V. Quiles, F.J. Aguilar, D. Crespí

IMPROVEMENTS (4)

SMART CONTROL

DHW CONSUMPTION

USER LEARNING

TEMP RADIATION
CONVINCE THE MANUFACTURERS TO JOIN HP AND PV
Photovoltaics for Sanitary Hot Water Production

Pedro V. Quiles
Francisco J. Aguilar
Damian Crespí

Heat Pump Water Heaters, a challenging future
Workshop at ICR 2019